Эпитоп Gal-a-1,3-Gal: роль в биологии клетки и трансплантации

Авторы

  • Konstantin I. Bohuslavskyi Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Galina A. Bozhok Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Evgeniy I. Legach Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Igor V. Furda Харьковская государственная зооветеринарная академия
  • Tatyana P. Bondarenko Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

DOI:

https://doi.org/10.15407/cryo26.01.003

Ключевые слова:

эпитоп a-Gal, трансплантация, биопротезы, гипотермическое хранение, криоконсервирование

Аннотация

Эпитоп Gal-a-1,3-Gal (a-Gal) – Ñто ÑƒÐ³Ð»ÐµÐ²Ð¾Ð´Ð½Ð°Ñ Ñтруктура, ÐºÐ¾Ñ‚Ð¾Ñ€Ð°Ñ ÑкÑпреÑÑируетÑÑ Ð½Ð° мембранах клеток млекопитающих, кроме некоторых видов обезьÑн и человека, и вызывает гипероÑтрый иммунный ответ при кÑено-транÑплантации. Ð’ приведенной работе кратко раÑÑматриваютÑÑ Ð²Ð¾Ð¿Ñ€Ð¾ÑÑ‹ Ñволюции Ñпитопа a-Gal, его раÑпроÑтраненноÑти в животном мире, биологичеÑкой роли, а также обÑуждаютÑÑ Ð¿Ñ€Ð¾Ð±Ð»ÐµÐ¼Ñ‹ иÑÐ¿Ð¾Ð»ÑŒÐ·Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¿Ñ€Ð¾Ñ‚ÐµÐ·Ð¾Ð² Ñвиного проиÑÑ…Ð¾Ð¶Ð´ÐµÐ½Ð¸Ñ Ð² медицинÑкой практике. По многим причинам данный вид животных ÑвлÑетÑÑ Ð½Ð°Ð¸Ð±Ð¾Ð»ÐµÐµ подходÑщим Ð´Ð»Ñ Ð¿Ð¾Ð»ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð±Ð¸Ð¾Ð¿Ñ€Ð¾Ñ‚ÐµÐ·Ð¾Ð² Ñердечных клапанов, ÑоÑудов и биоÑкаффолдов, однако вÑледÑтвие ÑкÑпреÑÑии в их организме большого количеÑтва Ñпитопа a-Gal требуетÑÑ ÑÐ¿ÐµÑ†Ð¸Ð°Ð»ÑŒÐ½Ð°Ñ Ð¾Ð±Ñ€Ð°Ð±Ð¾Ñ‚ÐºÐ° Ð´Ð»Ñ ÐµÐ³Ð¾ удалениÑ. Ð’ наÑтоÑщей обзорной Ñтатье предпринÑта попытка обобщить результаты Ð¸Ð·ÑƒÑ‡ÐµÐ½Ð¸Ñ ÑкÑпреÑÑии Ñпитопа a-Gal поÑле низкотемпературной обработки, поÑкольку данный метод широко иÑпользуетÑÑ Ð´Ð»Ñ Ñ…Ñ€Ð°Ð½ÐµÐ½Ð¸Ñ Ð±Ð¸Ð¾Ð¿Ñ€Ð¾Ñ‚ÐµÐ·Ð¾Ð² перед имплантацией. 

Биографии авторов

Konstantin I. Bohuslavskyi, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Отдел криобиохимии и фармакологии нейрогуморальных ÑиÑтем

Galina A. Bozhok, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Отдел криобиохимии и фармакологии нейрогуморальных ÑиÑтем

Evgeniy I. Legach, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Отдел криобиохимии и фармакологии нейрогуморальных ÑиÑтем

Igor V. Furda, Харьковская государственная зооветеринарная академия

Відділ кріобіохімії Ñ– фармакології нейрогуморальних ÑиÑтем

Tatyana P. Bondarenko, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Отдел криобиохимии и фармакологии нейрогуморальных ÑиÑтем

Библиографические ссылки

Anstee D.J. Blood group-active surface molecules of the human red blood cell. Vox Sang 1990; 58(1): 1–20. CrossRef

Artrip J. H., Kwiatkowski P., Michler R. E. et al. Target cell susceptibility to lysis by human natural killer cells is augmented by alpha(1,3)-galactosyltransferase and reduced by alpha(1,2)-fucosyltransferase. J Biol Chem 1999; 274(16): 10717–10722. CrossRef PubMed

Azimzadeh A., Meyer C., Watier H. et al. Removal of primate xenoreactive natural antibodies by extracorporeal perfusion of pig kidneys and livers. Transpl Immunol 1998; 6(1): 13–22. CrossRef

Bondarenko T.P., Bozhok G.A., Alabedalkarim N.M., Legach E.I. Xenotransplantation: historical aspect and modern state of the problem. Transplantologya 2004; 7(3): 130–135.

Brenner P., Hinz M., Huber H. et al. Influence of ischemic time on hyperacute xenograft rejection of pig hearts in a working heart perfusion model with human blood. Transpl Int 2000;13 (Suppl. 1): S494–503. CrossRef PubMed

Collins B.H., Cotterell A.H., McCurry K.R. et al. Cardiac xenografts between primate species provide evidence of the a-galactosyl determinant in hyperacute rejection. J Immunol 1994; 154(10): 5500–5510.

Cooper D.K., Koren E., Oriol R. Oligosaccharides and discordant xenotransplantation. Immun Rev 1994; 141: 31–58. CrossRef PubMed

Etienne-Decerf J., Malaise M., Mahieu P., Winand R. Elevated anti alpha-galactosyl antibody titers. A marker of progression in autoimmune thyroid disorders and endocrine ophthalmo-pathy. Acta Endocrinol 1987; 115: 67–74. PubMed

Galili U. Abnormal expression of alpha-galactosyl epitopes in man. A trigger for autoimmune processes. Lancet 1989; 8(8659): 358–361. CrossRef

Galili U. Anti-Gal and anti-non Gal antibody barriers in xenotransplantation. Miyagawa S., editor. Xenotransplantation. InTech, 2012. Available from: http://www.intechopen.com/books/xenotransplantation/anti-gal-and-anti-non-gal-antibody-barriers-in-xenotransplantation.

Galili U., Clark M., Mohandas N. et al. The natural anti-c~-galactosyl IgG on red cells in sickle cell disease. Blood Cells 1984; 14(1): 205–228.

Galili U., Clark M.R., Shohet S.B. et al. Evolutionary relationship between the natural anti-Gal antibody and the Gal-a-1,3-Gal epitope in primates. Proc Natl Acad Sci USA 1987; 84(5): 1369–1373. CrossRef PubMed

Galili U., Clark M.R., Shohet S.B. Excessive binding of natural anti-alpha-galactosyl IgG to sickle erythrocytes may contribute to extravascular cell destruction. J Clin Invest 1986; 77(1): 27–33. CrossRef PubMed

Galili U., Flechner I., Knyszynski A. et al. The natural anti-alpha-galactosyl IgG on human normal senescent red blood cells. Br J Haemotol 1986; 62 (2): 317–324. CrossRef PubMed

Galili U., Korkesh A., Kahane I., Rachmilewitz E.A. Demon-stration of a natural antigalactosyl IgG antibody on thalassemic red blood cells. Blood 1983; 61(6): 1258–1264. PubMed

Galili U., Macher B.A., Buehler J., Shohet S.B. Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1-3)-linked galactose residues. J Exp Med 1985; 162(2): 573–582. CrossRef PubMed

Galili U., Mandrell R.E., Hamadeh R.M. et al. Interaction between human natural anti-a-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun 1988; 56(7): 1730–1737. PubMed

Galili U., Rachmilewitz E.A., Peleg A., Flechner I. A unique natural human IgG antibody with anti-a-galactosyl specificity. J Exp Med 1984; 160(5): 1519–1531. CrossRef PubMed

Galili U., Shohet S.B., Kobrin E. et al. Man, apes and Old World monkeys differ from other mammals in the expression of a-galactosyl epitopes on nucleated cells. J Biol Chem 1988; 263(33): 17755–17762. PubMed

Galili U., Swanson K. Evolution gene sequences suggest inactivation of a-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci USA 1991; 88(16): 7401–7404. CrossRef

Galili U., Tibell A., Samuelsson B. et al. Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation 1995; 59(11): 1549–1556. CrossRef PubMed

Good A.H., Cooper D.C.K., Malcolm A.J. et al. Identification of carbohydrate structures which bind human anti-porcine antibodies: implication for discordant xenografting in man. Transplant Proc 1992; 24(2): 559–562. PubMed

Groth C.G., Korsgren O., Tibell A. et al. Transplantation of fetal porcine pancreas to diabetic patients. Lancet 1994; 344(8934): 1402–1404. CrossRef

Hayashi S., Katayama A., Nagasaka T. et al. Tissue distribution of Gal-alpha-1,3-Gal epitope in heart, kidney and liver of pig and mouse. Transplant Proceedings 1996; 28(1): 216. PubMed

Igaz P. Recent strategies to overcome the hyperacute rejection in pig to human xenotransplantation. Yale J Biol Med 2001; 74(5): 329–340. PubMed

Joziasse D.H., Oriol R. Xenotransplantation: the importance of the Gal-alpha-1,3-Gal epitope in hyperacute vascular rejec-tion. Biochem Biophys Acta 1999; 1455(2–3): 403–418. CrossRef

Keller M., Beiras-Fernandez A., Schmoeckel M. et al. Influence of hypothermia and cardioplegic solutions on expression of alpha-Gal epitope on porcine aortic endothelial cells. Exp Clin Transplant 2010; 8(3): 250–257. PubMed

Koike C., Fung J.J., Geller D.A. et al. Molecular basis of evolutionary loss of the 1,3–galactosyltransferase gene in higher primates. J Biol Chem 2002; 277(12): 10114–10120. CrossRef PubMed

Konakci K.Z., Bohle B., Blumer R. et al. Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. European Journal of Clinical Investigation 2005; 35(1): 17–23. CrossRef PubMed

Lai L., Kolber-Simonds D., Park K.W. et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002; 295(5557): 1089–1092. CrossRef PubMed

Leventhal J.R., Dalmasso A.P., Cromwell J.W. et al. Prolon-gation of cardiac xenograft survival by depletion of comple-ment. Transplantation 1993; 55(4): 857–865. CrossRef PubMed

Mayo G.L., Posselt A.M., Barker C.F. et al. Prolongation of survival of donor-strain islet xenografts (rat-mouse) by intrathymic inoculation of xenogeneic islet and bone marrow cells. Transplantation 1994; 58(1): 107–109. CrossRef PubMed

McKenzie I.F., Xing P.X., Vaughan H.A. et al. Distribution of the major xenoantigen (Gal-alpha-1,3-Gal) for pig to human xenografts. Transplant Immunol 1994; 2(2): 81–86. CrossRef

Napier J.R., Napier P. H. The natural history of the primates. Cambridge: MIT Press, 1985.

Oldmixon B.A., Wood J.C., Ericsson T.A. et al. Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J Virol 2002; 76 (6): 3045–3048. CrossRef PubMed

Oriol R., Ye Y., Koren E., Cooper D.K. Carbohydrate antigenes of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation.Transplantation.1993; 56(6): 1433–1442. CrossRef PubMed

Platt J.L. A perspective on xenograft rejection and accommo-dation. Immunol Rev 1994; 141: 127–149. CrossRef

Rayat G.R., Rajotte R.V., Hering B.J. et al. In vitro and in vivo expression of Gal-(1,3)-Gal on porcine islet cells is age dependent. J Endocrinology 2003; 177(1): 127–135. CrossRef

Saadi S., Ihrcke N.S., Platt J.L. Endothelial cell shape and hyperacute rejection. Transplant Proc 1994; 26(3): 1149. PubMed

Sandrin M., Vaughan H.A., Dabkowski P.L., McKenzie I.F.C. Anti-pig IgM antibodies in human serum react predominantly with Gal-a-1,3-Gal epitopes. Proc Natl Acad Sci USA 1993; 90(23): 11391–11395. CrossRef PubMed

Schoen F.J., Levy R.J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 2005; 79(3): 1072–1080. CrossRef PubMed

Simon P.M., Neethling F.A., Taniguchi S. et al. Intravenous infusion of Gal-alpha-1,3-Gal oligosaccharides in baboons delays hyperacute rejection of porcine hearts xenografts. Transplantation 1998; 65(3): 346–353. CrossRef PubMed

Tanemura M., Yin D., DiSesa V. J., Galili U. Preventing anti-Gal response in xenograft recipients by an alpha-Gal toxin. Transplant Proc 2001; 33(1–2): 699–700. CrossRef

van de Kerkhove M.P. Evidence for Gal-alpha-1,3-Gal expression on primary porcine hepatocytes: implication for bioartifical liver systems. J Hepatol 2005; 42(4): 541–547. CrossRef PubMed

Xu T., Lorf T., Sablinski T. et al. Removal of anti-porcine natural antibodies from human and nonhuman primate plasma in vitro and in vivo by a Gal-a-1,3-Gal-a-1,4-Glc-R immunoaffinity column.Transplantation 1998; 65(2): 172–179. CrossRef PubMed

Загрузки

Опубликован

2016-03-21

Как цитировать

Bohuslavskyi, K. I., Bozhok, G. A., Legach, E. I., Furda, I. V., & Bondarenko, T. P. (2016). Эпитоп Gal-a-1,3-Gal: роль в биологии клетки и трансплантации. Проблемы криобиологии и криомедицины, 26(1), 3–12. https://doi.org/10.15407/cryo26.01.003